
Alex Milenkovich 1

CPE/EE 421/521 Microcomputers 1

U

A

H
U

A

H

U

A

H

CPE/EE 421
Microcomputers

Instructor: Dr Aleksandar Milenkovic
Lecture Note

S16

*Material used is in part developed by
Dr. D. Raskovic and Dr. E. Jovanov

CPE/EE 421/521 Microcomputers 2

U

A

H
U

A

H

U

A

H

MSP430 Documentation

MSP430 home page (TI)
www.ti.com/msp430

User’s manual
http://www.ece.uah.edu/~milenka/cpe421-
04S/manuals/slau049c.pdf

Datasheet
http://www.ece.uah.edu/~milenka/cpe421-
04S/manuals/slas272c.pdf

TI Workshop document
http://www.ece.uah.edu/~milenka/cpe421-
04S/manuals/430_2002_atc_workshop.pdf

IAR Workbench Tutorial
http://www.ece.uah.edu/~milenka/cpe421-04S/manuals/TUTOR.pdf

Alex Milenkovich 2

CPE/EE 421/521 Microcomputers 3

U

A

H
U

A

H

U

A

H

The Basic Clock Module is configured using control registers DCOCTL, BCSCTL1, and
BCSCTL2, and four bits from the CPU status register: SCG1, SCG0, OscOff, and CPUOFF.

User software can modify these control registers from their default condition at any time. The
Basic Clock Module control registers are located in the byte-wide peripheral map and should
be accessed with byte (.B) instructions.

Register State Short Form Register Type Address Initial State
DCO control
register DCOCTL Read/write 056h 060h
Basic clock
system control 1 BCSCTL1 Read/write 057h 084h
Basic clock
system control 2 BCSCTL2 Read/write 058h reset

Basic Clock Module Control Registers

Basic Clock Systems-control registers

CPE/EE 421/521 Microcomputers 4

U

A

H
U

A

H

U

A

HBasic Clock Systems-control registers

rw-0 rw-1 rw-1 rw-0 rw-0 rw-0 rw-0 rw-0

DCO.2

056h

DCOCTL

DCO.1 DCO.0 MOD.4 MOD.3 MOD.2 MOD.1 MOD.0

rw-(1) rw-(0) rw-(0) rw-(0) rw-0 rw-1 rw-0 rw-0

057h

BCSCTL1

XT2Off Rsel.0Rsel.1Rsel.2XTS DIVA.1 DIVA.0 XT5V

Selection of
DCO nominal
frequency

Which of eight
discrete DCO
frequencies is
selected

Define how often frequency
fDCO+1 within the period of
32 DCOCLK cycles is
used. Remaining clock
cycles (32-MOD) the
frequency fDCO is mixed

RSEL.x Select DCO nominal frequency
DCO.x and MOD.x set exact DCOCLK

… select other clock tree options

Direct SW Control
DCOCLK can be Set - Stabilized
Stable DCOCLK over Temp/Vcc.

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

SELM.1

058h

BCSCTL2

SELM.0 DIVM.1 DIVM.0 SELS DIVS.1 DIVS.0 DCOR

Alex Milenkovich 3

CPE/EE 421/521 Microcomputers 5

U

A

H
U

A

H

U

A

H

Basic Clock Systems-control registers

Digitally-Controlled Oscillator (DCO) Clock-Frequency Control

DCOCTL is loaded with a value of 060h with a valid PUC condition.

7 0

DCOCTL DCO.2 DCO.1 DCO.0 MOD.4 MOD.3 MOD.2 MOD.1 MOD.0

056H 0 1 1 0 0 0 0 0

MOD.0 .. MOD.4: The MOD constant defines how often the discrete frequency
fDCO+1 is used within a period of 32 DCOCLK cycles.

During the remaining clock cycles (32–MOD) the discrete frequency f DCO is used.
When the DCO constant is set to seven, no modulation is possible since the
highest feasible frequency has then been selected.

DCO.0 .. DCO.2: The DCO constant defines which one of the eight discrete
frequencies is selected. The frequency is defined by the current injected into
the dc generator.

CPE/EE 421/521 Microcomputers 6

U

A

H
U

A

H

U

A

H

Basic Clock Systems-control registers

Oscillator and Clock Control Register

BCSCTL1 is affected by a valid PUC or POR condition.

7 0

BCSCTL1 XT2Off XTS DIVA.1 DIVA.0 XT5V Rsel.0 Rsel.1 Rsel.2

057h 1 0 0 0 0 1 0 0

Bit0 to Bit2: The internal resistor is selected in eight different steps.

Rsel.0 to Rsel.2 The value of the resistor defines the nominal frequency.
The lowest nominal frequency is selected by setting Rsel=0.

Bit3, XT5V: XT5V should always be reset.

Bit4 to Bit5: The selected source for ACLK is divided by:
DIVA = 0: 1
DIVA = 1: 2
DIVA = 2: 4
DIVA = 3: 8

Alex Milenkovich 4

CPE/EE 421/521 Microcomputers 7

U

A

H
U

A

H

U

A

H

Basic Clock Systems-control registers

Bit6, XTS: The LFXT1 oscillator operates with a low-frequency or with a high-
frequency crystal:

XTS = 0: The low-frequency oscillator is selected.
XTS = 1: The high-frequency oscillator is selected.

The oscillator selection must meet the external crystal’s operating condition.

Bit7, XT2Off: The XT2 oscillator is switched on or off:
XT2Off = 0: the oscillator is on
XT2Off = 1: the oscillator is off if it is not used for MCLK or SMCLK.

CPE/EE 421/521 Microcomputers 8

U

A

H
U

A

H

U

A

H

Basic Clock Systems-control registers

BCSCTL2 is affected by a valid PUC or POR condition.

7 0

BCSCTL2 SELM.1 SELM.0 DIVM.1 DIVM.0 SELS DIVS.1 DIVS.0 DCOR

058h

Bit0, DCOR: The DCOR bit selects the resistor for injecting current into the dc generator.
Based on this current, the oscillator operates if activated.
DCOR = 0: Internal resistor on, the oscillator can operate. The fail-safe mode is on.
DCOR = 1: Internal resistor off, the current must be injected externally if the DCO

output drives any clock using the DCOCLK.

Bit1, Bit2: The selected source for SMCLK is divided by:

DIVS.1 .. DIVS.0 DIVS = 0:1
DIVS = 1: 2
DIVS = 2: 4
DIVS = 3: 8

Alex Milenkovich 5

CPE/EE 421/521 Microcomputers 9

U

A

H
U

A

H

U

A

H

Basic Clock Systems-control registers

Bit3, SELS: Selects the source for generating SMCLK:
SELS = 0: Use the DCOCLK
SELS = 1: Use the XT2CLK signal (in three-oscillator systems)

or
LFXT1CLK signal (in two-oscillator systems)

Bit4, Bit5: The selected source for MCLK is divided by DIVM.0 .. DIVM.1
DIVM = 0: 1
DIVM = 1: 2
DIVM = 2: 4
DIVM = 3: 8

Bit6, Bit7: Selects the source for generating MCLK:

SELM.0 .. SELM.1
SELM = 0: Use the DCOCLK
SELM = 1: Use the DCOCLK
SELM = 2: Use the XT2CLK (x13x and x14x devices)

or
Use the LFXT1CLK (x11x(1) devices)
SELM = 3: Use the LFXT1CLK

CPE/EE 421/521 Microcomputers 10

U

A

H
U

A

H

U

A

H

Initial State

DCOCTL: 60h => DCO = 011b, MOD = 00000b

BCSCTL1: 84h => XT2Off = 1, XTS = 0, DIVA = 00b, Rsel = 000b

BCSCTL2: 00x => SELM = 00b, DIVM = 00b, SELS=0, DIVS=00, DCOR = 0

IE1 (Interrupt Enable 1):
00x (OFIE bit 1: oscillator fault interrupt enable => enables OFIFG interrupt)

IFG1 (Interrupt Flag Register 1):

00x (OFIFG bit 1: oscillator fault interrupt flag)

⇒DCO selected

⇒MCLK = f(Rsel=000, DCO=011b) = 800KHz (min); 1200KHz (nom)

⇒SMCLK = MCLK

⇒ACLK = N/A

Alex Milenkovich 6

CPE/EE 421/521 Microcomputers 11

U

A

H
U

A

H

U

A

H

msp430x14x.h: STATUS REG. BITS
/**
* STATUS REGISTER BITS
**/
#define C (0x0001)
#define Z (0x0002)
#define N (0x0004)
#define V (0x0100)
#define GIE (0x0008) // GIE: General interrupt enable
#define CPUOFF (0x0010) // when set, turns off CPU
#define OSCOFF (0x0020) // when set, turns off LFXT1 (if not used for (S)MCLK)
#define SCG0 (0x0040) // when set, turns off DCO (if not used for (S)MCLK)
#define SCG1 (0x0080) // when set, turns off SMCLK

/* Low Power Modes coded with Bits 4-7 in SR */
#ifndef __IAR_SYSTEMS_ICC /* Begin #defines for assembler */
#define LPM0 (CPUOFF)
#define LPM1 (SCG0+CPUOFF)
#define LPM2 (SCG1+CPUOFF)
#define LPM3 (SCG1+SCG0+CPUOFF)
#define LPM4 (SCG1+SCG0+OSCOFF+CPUOFF)
/* End #defines for assembler */

#else /* Begin #defines for C */
#define LPM0_bits (CPUOFF)
#define LPM1_bits (SCG0+CPUOFF)
#define LPM2_bits (SCG1+CPUOFF)
#define LPM3_bits (SCG1+SCG0+CPUOFF)
#define LPM4_bits (SCG1+SCG0+OSCOFF+CPUOFF)

CPE/EE 421/521 Microcomputers 12

U

A

H
U

A

H

U

A

H
msp430x14x.h: WDT BITS

/**
* WATCHDOG TIMER
**/

#define WDTCTL_ (0x0120) /* Watchdog Timer Control */
sfrw WDTCTL = WDTCTL_;
/* The bit names have been prefixed with "WDT" */
#define WDTIS0 (0x0001)
#define WDTIS1 (0x0002)
#define WDTSSEL (0x0004)
#define WDTCNTCL (0x0008)
#define WDTTMSEL (0x0010)
#define WDTNMI (0x0020)
#define WDTNMIES (0x0040)
#define WDTHOLD (0x0080)

#define WDTPW (0x5A00)

Alex Milenkovich 7

CPE/EE 421/521 Microcomputers 13

U

A

H
U

A

H

U

A

H

msp430x14x.h: WDT BITS
/* WDT-interval times [1ms] coded with Bits 0-2 */
/* WDT is clocked by fMCLK (assumed 1MHz) */
#define WDT_MDLY_32 (WDTPW+WDTTMSEL+WDTCNTCL) /* 32ms interval
(default) */
#define WDT_MDLY_8 (WDTPW+WDTTMSEL+WDTCNTCL+WDTIS0) /* 8ms " */
#define WDT_MDLY_0_5 (WDTPW+WDTTMSEL+WDTCNTCL+WDTIS1) /* 0.5ms " */
#define WDT_MDLY_0_064 (WDTPW+WDTTMSEL+WDTCNTCL+WDTIS1+WDTIS0) /* 0.064ms " */
/* WDT is clocked by fACLK (assumed 32KHz) */
#define WDT_ADLY_1000 (WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL) /* 1000ms " */
#define WDT_ADLY_250 (WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL+WDTIS0) /* 250ms " */
#define WDT_ADLY_16 (WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL+WDTIS1) /* 16ms " */
#define WDT_ADLY_1_9 (WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL+WDTIS1+WDTIS0) /* 1.9ms " */
/* Watchdog mode -> reset after expired time */
/* WDT is clocked by fMCLK (assumed 1MHz) */
#define WDT_MRST_32 (WDTPW+WDTCNTCL) /* 32ms interval
(default) */
#define WDT_MRST_8 (WDTPW+WDTCNTCL+WDTIS0) /* 8ms " */
#define WDT_MRST_0_5 (WDTPW+WDTCNTCL+WDTIS1) /* 0.5ms " */
#define WDT_MRST_0_064 (WDTPW+WDTCNTCL+WDTIS1+WDTIS0) /* 0.064ms " */
/* WDT is clocked by fACLK (assumed 32KHz) */
#define WDT_ARST_1000 (WDTPW+WDTCNTCL+WDTSSEL) /* 1000ms " */
#define WDT_ARST_250 (WDTPW+WDTCNTCL+WDTSSEL+WDTIS0) /* 250ms " */
#define WDT_ARST_16 (WDTPW+WDTCNTCL+WDTSSEL+WDTIS1) /* 16ms " */
#define WDT_ARST_1_9 (WDTPW+WDTCNTCL+WDTSSEL+WDTIS1+WDTIS0) /* 1.9ms " */

CPE/EE 421/521 Microcomputers 14

U

A

H
U

A

H

U

A

H
msp430x14x.h: Basic Clock

/**
* Basic Clock Module
**/

#define DCOCTL_ (0x0056) /* DCO Clock Frequency Control */
sfrb DCOCTL = DCOCTL_;
#define BCSCTL1_ (0x0057) /* Basic Clock System Control 1 */
sfrb BCSCTL1 = BCSCTL1_;
#define BCSCTL2_ (0x0058) /* Basic Clock System Control 2 */
sfrb BCSCTL2 = BCSCTL2_;

#define MOD0 (0x01) /* Modulation Bit 0 */
#define MOD1 (0x02) /* Modulation Bit 1 */
#define MOD2 (0x04) /* Modulation Bit 2 */
#define MOD3 (0x08) /* Modulation Bit 3 */
#define MOD4 (0x10) /* Modulation Bit 4 */
#define DCO0 (0x20) /* DCO Select Bit 0 */
#define DCO1 (0x40) /* DCO Select Bit 1 */
#define DCO2 (0x80) /* DCO Select Bit 2 */

#define RSEL0 (0x01) /* Resistor Select Bit 0 */
#define RSEL1 (0x02) /* Resistor Select Bit 1 */
#define RSEL2 (0x04) /* Resistor Select Bit 2 */
#define XT5V (0x08) /* XT5V should always be reset */
#define DIVA0 (0x10) /* ACLK Divider 0 */
#define DIVA1 (0x20) /* ACLK Divider 1 */
#define XTS (0x40) /* LFXTCLK 0:Low Freq. / 1: High Freq. */
#define XT2OFF (0x80) /* Enable XT2CLK */

Alex Milenkovich 8

CPE/EE 421/521 Microcomputers 15

U

A

H
U

A

H

U

A

H

msp430x14x.h: Basic Clock
#define DIVA_0 (0x00) /* ACLK Divider 0: /1 */
#define DIVA_1 (0x10) /* ACLK Divider 1: /2 */
#define DIVA_2 (0x20) /* ACLK Divider 2: /4 */
#define DIVA_3 (0x30) /* ACLK Divider 3: /8 */

#define DCOR (0x01) /* Enable External Resistor : 1 */
#define DIVS0 (0x02) /* SMCLK Divider 0 */
#define DIVS1 (0x04) /* SMCLK Divider 1 */
#define SELS (0x08) /* SMCLK Source Select 0:DCOCLK / 1:XT2CLK/LFXTCLK */
#define DIVM0 (0x10) /* MCLK Divider 0 */
#define DIVM1 (0x20) /* MCLK Divider 1 */
#define SELM0 (0x40) /* MCLK Source Select 0 */
#define SELM1 (0x80) /* MCLK Source Select 1 */

#define DIVS_0 (0x00) /* SMCLK Divider 0: /1 */
#define DIVS_1 (0x02) /* SMCLK Divider 1: /2 */
#define DIVS_2 (0x04) /* SMCLK Divider 2: /4 */
#define DIVS_3 (0x06) /* SMCLK Divider 3: /8 */

#define DIVM_0 (0x00) /* MCLK Divider 0: /1 */
#define DIVM_1 (0x10) /* MCLK Divider 1: /2 */
#define DIVM_2 (0x20) /* MCLK Divider 2: /4 */
#define DIVM_3 (0x30) /* MCLK Divider 3: /8 */

#define SELM_0 (0x00) /* MCLK Source Select 0: DCOCLK */
#define SELM_1 (0x40) /* MCLK Source Select 1: DCOCLK */
#define SELM_2 (0x80) /* MCLK Source Select 2: XT2CLK/LFXTCLK */
#define SELM_3 (0xC0) /* MCLK Source Select 3: LFXTCLK */

CPE/EE 421/521 Microcomputers 16

U

A

H
U

A

H

U

A

H
msp430x14x.h: Basic Clock

#define DIVA_0 (0x00) /* ACLK Divider 0: /1 */
#define DIVA_1 (0x10) /* ACLK Divider 1: /2 */
#define DIVA_2 (0x20) /* ACLK Divider 2: /4 */
#define DIVA_3 (0x30) /* ACLK Divider 3: /8 */

#define DCOR (0x01) /* Enable External Resistor : 1 */
#define DIVS0 (0x02) /* SMCLK Divider 0 */
#define DIVS1 (0x04) /* SMCLK Divider 1 */
#define SELS (0x08) /* SMCLK Source Select 0:DCOCLK / 1:XT2CLK/LFXTCLK */
#define DIVM0 (0x10) /* MCLK Divider 0 */
#define DIVM1 (0x20) /* MCLK Divider 1 */
#define SELM0 (0x40) /* MCLK Source Select 0 */
#define SELM1 (0x80) /* MCLK Source Select 1 */

#define DIVS_0 (0x00) /* SMCLK Divider 0: /1 */
#define DIVS_1 (0x02) /* SMCLK Divider 1: /2 */
#define DIVS_2 (0x04) /* SMCLK Divider 2: /4 */
#define DIVS_3 (0x06) /* SMCLK Divider 3: /8 */

#define DIVM_0 (0x00) /* MCLK Divider 0: /1 */
#define DIVM_1 (0x10) /* MCLK Divider 1: /2 */
#define DIVM_2 (0x20) /* MCLK Divider 2: /4 */
#define DIVM_3 (0x30) /* MCLK Divider 3: /8 */

#define SELM_0 (0x00) /* MCLK Source Select 0: DCOCLK */
#define SELM_1 (0x40) /* MCLK Source Select 1: DCOCLK */
#define SELM_2 (0x80) /* MCLK Source Select 2: XT2CLK/LFXTCLK */
#define SELM_3 (0xC0) /* MCLK Source Select 3: LFXTCLK */

Alex Milenkovich 9

CPE/EE 421/521 Microcomputers 17

U

A

H
U

A

H

U

A

HInitialize Basic Clock Module:
An Example

void InitOsc(void)
{
WDTCTL = WDTPW | WDTHOLD; // stop watchdog timer
BCSCTL1 |= XTS; // XT1 as high-frequency
_BIC_SR(OSCOFF); // turn on XT1 oscillator

do // wait in loop until crystal is stable
IFG1 &= ~OFIFG;

while (IFG1 & OFIFG);

BCSCTL1 |= DIVA0; // ACLK = XT1 / 2
BCSCTL1 &= ~DIVA1;

IE1 &= ~WDTIE; // disable WDT int.
IFG1 &= ~WDTIFG; // clear WDT int. flag

WDTCTL = WDTPW | WDTTMSEL | WDTCNTCL | WDTSSEL | WDTIS1; // use WDT as timer, flag each
// 512 pulses from ACLK

while (!(IFG1 & WDTIFG)); // count 1024 pulses from XT1 (until XT1's
// amplitude is OK)

IFG1 &= ~OFIFG; // clear osc. fault int. flag
BCSCTL2 = SELM0 | SELM1; // set XT1 as MCLK

}

CPE/EE 421/521 Microcomputers 18

U

A

H
U

A

H

U

A

H

Basic Clock Systems-Examples

Adjusting the Basic Clock

The control registers of the Basic Clock are under full software control. If clock
requirements other than those of the default from PUC are necessary, the Basic
Clock can be configured or reconfigured by software at any time during program
execution.

ACLKGEN from LFXT1 crystal, resonator, or external-clock source and divided by 1, 2,
4, or 8. If no LFXTCLK clock signal is needed in the application, the OscOff bit should
be set in the status register.

SCLKGEN from LFXTCLK, DCOCLK, or XT2CLK (x13x and x14x only) and divided by
1, 2, 4, or 8. The SCG1 bit in the status register enables or disables SMCLK.

MCLKGEN from LFXTCLK, DCOCLK, or XT2CLK (x13x and x14x only) and divided by
1, 2, 4, or 8. When set, the CPUOff bit in the status register enables or disables MCLK.

DCOCLK frequency is adjusted using the RSEL, DCO, and MOD bits. The DCOCLK
clock source is stopped when not used, and the dc generator can be disabled by the
SCG0 bit in the status register (when set).

The XT2 oscillator sources XT2CLK (x13x and x14x only) by clearing the XT2Off bit.

Alex Milenkovich 10

CPE/EE 421/521 Microcomputers 19

U

A

H
U

A

H

U

A

HWatchdog Timer-General

General

The primary function of the watchdog-timer module (WDT) is to perform a
controlled-system restart after a software problem occurs. If the selected time
interval expires, a system reset is generated. If the watchdog function is not
needed in an application, the module can work as an interval timer, to generate
an interrupt after the selected time interval.

Features of the Watchdog Timer include:
Eight software-selectable time intervals
Two operating modes: as watchdog or interval timer
Expiration of the time interval in watchdog mode, which generates a
system reset; or in timer mode, which generates an interrupt request
Safeguards which ensure that writing to the WDT control register is only
possible using a password
Support of ultralow-power using the hold mode

Watchdog/Timer two functions:
SW Watchdog Mode
Interval Timer Mode

CPE/EE 421/521 Microcomputers 20

U

A

H
U

A

H

U

A

HWatchdog Timer-Diagram

Alex Milenkovich 11

CPE/EE 421/521 Microcomputers 21

U

A

H
U

A

H

U

A

HWatchdog Timer-Registers

Watchdog Timer Counter

The watchdog-timer counter (WDTCNT) is a 16-bit up-counter that is not
directly accessible by software. The WDTCNT is controlled through the
watchdog-timer control register (WDTCTL), which is a 16-bit read/write
register located at the low byte of word address 0120h. Any read or write
access must be done using word instructions with no suffix or .w suffix. In
both operating modes (watchdog or timer), it is only possible to write to
WDTCTL using the correct password.

Watchdog Timer Control Register

MDB, LowByte

Password Compare

MDB, HighByte R/W

EQU

WDT 16-bit Control Register with Write Protection Read:HighByte is 069h Write:HighByte is 05Ah, otherwise
security key is violated

HOLD NMINMIES TMSEL CNTCL SSEL IS1

7 0

ISO

0120hWDTCTL

Bits 0, 1: Bits IS0 and IS1 select one of four taps from the WDTCNT, as described in
following table. Assuming f crystal = 32,768 Hz and f System = 1 MHz, the following intervals
are possible:

CPE/EE 421/521 Microcomputers 22

U

A

H
U

A

H

U

A

HWatchdog Timer-Registers

SSEL IS1 IS0 Interval [ms]

0 1 1 0.064 t SMCLK × 2 6

0 1 0 0.5 t SMCLK × 2 9

1 1 1 1.9 t ACLK × 2 6

0 0 1 8 t SMCLK × 2 13

1 1 0 16.0 t ACLK × 2 9

0 0 0 32 t SMCLK × 2 15 <– Value after PUC (reset)

1 0 1 250 t ACLK × 2 13

1 0 0 1000 t ACLK × 2 15

Bit 2: The SSEL bit selects the clock source for WDTCNT.

SSEL = 0: WDTCNT is clocked by SMCLK .

SSEL = 1: WDTCNT is clocked by ACLK.

Bit 3: Counter clear bit. In both operating modes, writing a 1 to this bit

restarts the WDTCNT at 00000h. The value read is not defined.

Bit 4: The TMSEL bit selects the operating mode: watchdog or timer.

TMSEL = 0: Watchdog mode

TMSEL = 1: Interval-timer mode

Table: WDTCNT Taps

Alex Milenkovich 12

CPE/EE 421/521 Microcomputers 23

U

A

H
U

A

H

U

A

HWatchdog Timer-Registers

Bit 5: The NMI bit selects the function of the RST/NMI input pin. It is cleared by
the PUC signal.
NMI = 0: The RST/NMI input works as reset input.
As long as the RST/NMI pin is held low, the internal signal is active (level sensitive).
NMI = 1: The RST/NMI input works as an edge-sensitive non-maskable interrupt

input.

Bit 6: If the NMI function is selected, this bit selects the activating edge of the
RST/NMI input. It is cleared by the PUC signal.
NMIES = 0: A rising edge triggers an NMI interrupt.
NMIES = 1: A falling edge triggers an NMI interrupt.

CAUTION: Changing the NMIES bit with software can generate an NMI interrupt.

Bit 7: This bit stops the operation of the watchdog counter. The clock
multiplexer is disabled and the counter stops incrementing. It holds the last
value until the hold bit is reset and the operation continues. It is cleared by
the PUC signal.
HOLD = 0: The WDT is fully active.
HOLD = 1: The clock multiplexer and counter are stopped.

CPE/EE 421/521 Microcomputers 24

U

A

H
U

A

H

U

A

HWatchdog Timer-Interrupt Function

The Watchdog Timer (WDT) uses two bits in the SFRs for interrupt
control.

The WDT interrupt flag (WDTIFG) (located in IFG1.0, initial state is reset)

The WDT interrupt enable (WDTIE) (located in IE1.0, initial state is reset)

When using the watchdog mode, the WDTIFG flag is used by the reset
interrupt service routine to determine if the watchdog caused the device to
reset. If the flag is set, then the Watchdog Timer initiated the reset condition
(either by timing out or by a security key violation). If the flag is cleared, then
the PUC was caused by a different source. See chapter 3 for more details on
the PUC and POR signals.

When using the Watchdog Timer in interval-timer mode, the WDTIFG flag is
set after the selected time interval and a watchdog interval-timer interrupt is
requested. The interrupt vector address in interval-timer mode is different
from that in watchdog mode. In interval-timer mode, the WDTIFG flag is reset
automatically when the interrupt is serviced.

The WDTIE bit is used to enable or disable the interrupt from the Watchdog
Timer when it is being used in interval-timer mode. Also, the GIE bit enables or
disables the interrupt from the Watchdog Timer when it is being used in
interval-timer mode.

Alex Milenkovich 13

CPE/EE 421/521 Microcomputers 25

U

A

H
U

A

H

U

A

HWatchdog Timer-Timer Mode

Setting WDTCTL register bit TMSEL to 1 selects the timer mode. This mode
provides periodic interrupts at the selected time interval. A time interval can
also be initiated by writing a 1 to bit CNTCL in the WDTCTL register.

When the WDT is configured to operate in timer mode, the WDTIFG flag is set
after the selected time interval, and it requests a standard interrupt service.
The WDT interrupt flag is a single-source interrupt flag and is automatically
reset when it is serviced. The enable bit remains unchanged. In interval-timer
mode, the WDT interrupt-enable bit and the GIE bit must be set to allow the
WDT to request an interrupt. The interrupt vector address in timer mode is
different from that in watchdog mode.

CPE/EE 421/521 Microcomputers 26

U

A

H
U

A

H

U

A

HWatchdog Timer-Examples

How to select timer mode
/* WDT is clocked by fACLK (assumed 32Khz) */
WDTCL=WDT_ADLY_250; // WDT 250MS/4 INTERVAL TIMER
IE1 |=WDTIE; // ENABLE WDT INTERRUPT

How to stop watchdog timer

WDTCTL=WDTPW + WDTHOLD ; // stop watchdog timer

Assembly programming

WDT_key .equ 05A00h ; Key to access WDT
WDTStop mov #(WDT_Key+80h),&WDTCTL ; Hold Watchdog
WDT250 mov #(WDT_Key+1Dh),&WDTCTL ; WDT, 250ms Interval

Alex Milenkovich 14

CPE/EE 421/521 Microcomputers 27

U

A

H
U

A

H

U

A

H

System Reset and Initialization

Reset

Interrupt

Watchdog Timer

CPE/EE 421/521 Microcomputers 28

U

A

H
U

A

H

U

A

H

Interrupt Service Routines

/**

* Interrupt Vectors (offset from 0xFFE0)

**/

#define PORT2_VECTOR 1 * 2 /* 0xFFE2 Port 2 */

#define UART1TX_VECTOR 2 * 2 /* 0xFFE4 UART 1 Transmit */

#define UART1RX_VECTOR 3 * 2 /* 0xFFE6 UART 1 Receive */

#define PORT1_VECTOR 4 * 2 /* 0xFFE8 Port 1 */

#define TIMERA1_VECTOR 5 * 2 /* 0xFFEA Timer A CC1-2, TA */

#define TIMERA0_VECTOR 6 * 2 /* 0xFFEC Timer A CC0 */

#define ADC_VECTOR 7 * 2 /* 0xFFEE ADC */

#define UART0TX_VECTOR 8 * 2 /* 0xFFF0 UART 0 Transmit */

#define UART0RX_VECTOR 9 * 2 /* 0xFFF2 UART 0 Receive */

#define WDT_VECTOR 10 * 2 /* 0xFFF4 Watchdog Timer */

#define COMPARATORA_VECTOR 11 * 2 /* 0xFFF6 Comparator A */

#define TIMERB1_VECTOR 12 * 2 /* 0xFFF8 Timer B 1-7 */

#define TIMERB0_VECTOR 13 * 2 /* 0xFFFA Timer B 0 */

#define NMI_VECTOR 14 * 2 /* 0xFFFC Non-maskable */

#define RESET_VECTOR 15 * 2 /* 0xFFFE Reset [Highest Pr.] */

Alex Milenkovich 15

CPE/EE 421/521 Microcomputers 29

U

A

H
U

A

H

U

A

HInterrupt Service Routines

Interrupt Service Routine declaration

// Func. declaration

Interrupt[int_vector] void myISR (Void);

Interrupt[int_vector] void myISR (Void)

{
// ISR code

}

CPE/EE 421/521 Microcomputers 30

U

A

H
U

A

H

U

A

H

Reset Sources

Hardware reset (POR – Power On Reset)
Internal power on reset
Reset line (RST#/NMI) is pulled low

Software reset (POC – Power on Clear)
Watchdog timer expiration
Security key violations (Flash, Watchdog)
POR (poweron or RST line)

Alex Milenkovich 16

CPE/EE 421/521 Microcomputers 31

U

A

H
U

A

H

U

A

H

What happens on reset

POR always calls the reset interrupt vector at
0FFFEh

POC calls the reset interrupt vector or the
interrupt vector of the system that generated it
(Flash, WDT)

check the data sheet for device you are using

CPE/EE 421/521 Microcomputers 32

U

A

H
U

A

H

U

A

H

Reset Conditions

POR
Status Register is cleared
PC is loaded with the address from FFFE
peripheral devices enter their poweron

POC
Status Register is cleared
PC is loaded with the address from FFFE or from the
interrupt vector of the system that generated
interrupt (FFFC for WDT)
some peripheral devices are reset,
some are not

Alex Milenkovich 17

CPE/EE 421/521 Microcomputers 33

U

A

H
U

A

H

U

A

H

Software Initialization

After a system reset, user software must
initialize the MSP430 for the application
requirements.

Initialize the SP, typically to the top of RAM.
Initialize the watchdog to the requirements of the
application.
Configure peripheral modules to the requirements of
the application.
Additionally, the watchdog timer, oscillator fault, and
flash memory flags can be evaluated to determine the
source of the reset.

CPE/EE 421/521 Microcomputers 34

U

A

H
U

A

H

U

A

H

Problem of branched initialization

Initializations for POR and POC require different
setup to be performed

Procedure
Set a Flash memory location to 0x00 after POR
initialization
Check that location on any Reset
If it zero go on POC setup,
otherwise it’s POR

Alex Milenkovich 18

CPE/EE 421/521 Microcomputers 35

U

A

H
U

A

H

U

A

H

Interrupts

Three types
System reset
(Non)-maskable NMI
Maskable

GIE bit in SR: mask all maskable interrupts

Enable/disable bit for each interrupt

CPE/EE 421/521 Microcomputers 36

U

A

H
U

A

H

U

A

H

Interrupt Priorities

Alex Milenkovich 19

CPE/EE 421/521 Microcomputers 37

U

A

H
U

A

H

U

A

H

Interrupt
Sources,
Flags,

Vectors

CPE/EE 421/521 Microcomputers 38

U

A

H
U

A

H

U

A

H

NMI Interrupts

Sources
An edge on the RST/NMI pin
An oscillator fault occurs
An access violation to the flash memory

Cannot be masked by GIE,
but controlled by individual bits ACCVIE, NMIIE,
OFIE

PC is initialized from (non)-maskable interrupt
vector, 0FFFCh.

When a NMI is accepted all control bits are
reset (ACCVIE, NMIIE, OFIE)

Alex Milenkovich 20

CPE/EE 421/521 Microcomputers 39

U

A

H
U

A

H

U

A

H

RST/NMI Pin

RST#/NMI pin is selected in the watchdog
control register WDTCTL

Reset function configuration
the CPU is held in the reset state
as long as the RST#/NMI pin is held low
when in a high state the CPU starts program
execution at the address stored in the reset vector,
0FFFEh

NMI function configuration
a signal edge selected by the NMIES bit generates an
NMI interrupt if the NMIIE bit is set. The RST/NMI flag
NMIFG is also set.

CPE/EE 421/521 Microcomputers 40

U

A

H
U

A

H

U

A

H

Oscillator Fault

Warns for a possible error condition with crystal
oscillator if OFIF bit is set

The OFIFG flag can be tested by the interrupt
service routine to determine if the NMI was
caused by an oscillator fault

Alex Milenkovich 21

CPE/EE 421/521 Microcomputers 41

U

A

H
U

A

H

U

A

H

Flash Access Violation

The flash ACCVIFG flag is set when a flash
access violation occurs.

The flash access violation can be enabled to
generate an NMI interrupt by setting the
ACCVIE bit.

The ACCVIFG flag can then be tested by NMI
the interrupt service routine to determine if the
NMI was caused by a flash access violation.

CPE/EE 421/521 Microcomputers 42

U

A

H
U

A

H

U

A

H

NMI Interrupt Handler

Alex Milenkovich 22

CPE/EE 421/521 Microcomputers 43

U

A

H
U

A

H

U

A

H

Maskable Interrupts

Caused by peripherals with interrupt capability
+ WDT in timer overflow mode

All can be disabled with GIE
(General Interrupt Enable)

Each can be enabled/disabled individually
interrupt enable bit
(peripheral specific)

CPE/EE 421/521 Microcomputers 44

U

A

H
U

A

H

U

A

H

Interrupt Entrance

1. Any currently executing instruction is completed.

2. The PC, which points to the next instruction, is pushed onto
the stack.

3. The SR is pushed onto the stack.

4. The interrupt with the highest priority is selected if multiple
interrupts occurred during the last instruction and are
pending for service.

5. The interrupt request flag resets automatically on single-
source flags. Multiple source flags remain set for servicing by
software.

6. The SR is cleared with the exception of SCG0, which is left
unchanged. This terminates any low-power mode.

7. The content of the interrupt vector is loaded into the PC: the
program continues with the interrupt service routine at that
address.

Alex Milenkovich 23

CPE/EE 421/521 Microcomputers 45

U

A

H
U

A

H

U

A

H

Return from Interrupt

1. The SR with all previous settings pops from
the stack. All previous settings of GIE,
CPUOFF, etc. are now in effect, regardless of
the settings used during the interrupt service
routine.

2. The PC pops from the stack and begins
execution at the point where it was
interrupted.

CPE/EE 421/521 Microcomputers 46

U

A

H
U

A

H

U

A

H

Operating Modes
for Basic Clock System (cont’d)

Alex Milenkovich 24

CPE/EE 421/521 Microcomputers 47

U

A

H
U

A

H

U

A

HOperating Modes for
Basic Clock System

MSP430x1xx Microcontrollers
Low Power Modes

CPE/EE 421/521 Microcomputers

Alex Milenkovich 25

CPE/EE 421/521 Microcomputers 49

U

A

H
U

A

H

U

A

H

Power as a Design Constraint

Why worry about power?
Battery life in portable and mobile platforms
Power consumption in desktops, server farms

• Cooling costs, packaging costs, reliability, timing
• Power density: 30 W/cm2 in Alpha 21364

(3x of typical hot plate)

Environment?
• IT consumes 10% of energy in the US

Power becomes a first class architectural design constraint

CPE/EE 421/521 Microcomputers 50

U

A

H
U

A

H

U

A

H

Where does power go in CMOS?

leakshort
2 VIfAVIfACVP ++= τ

Dynamic power
consumption

Power due to
short-circuit
current during
transition

Power due to
leakage current

Alex Milenkovich 26

CPE/EE 421/521 Microcomputers 51

U

A

H
U

A

H

U

A

H

Dynamic Power Consumption

fACV2

A - Activity of gates
How often on average do
wires switch?

f – clock frequency
Trend: increasing ...

V – Supply voltage
Trend: has been dropping
with each successive fab

C – Total capacitance
seen by the gate’s outputs
Function of wire lengths,
transistor sizes, ...

Reducing Dynamic Power
1) Reducing V has quadratic effect; Limits?
2) Lower C - shrink structures, shorten wires
3) Reduce switching activity - Turn off unused parts or

use design techniques to minimize number of transitions

CPE/EE 421/521 Microcomputers 52

U

A

H
U

A

H

U

A

H

Short-circuit Power Consumption

Finite slope of the input signal
causes a direct current path
between VDD and GND for a
short period of time during
switching when both the
NMOS and PMOS transistors
are conducting

Vin Vout

CL

Ishort

fAVIshortτ

Reducing Short-circuit
1) Lower the supply voltage V
2) Slope engineering – match the rise/fall time of the input and output signals

Alex Milenkovich 27

CPE/EE 421/521 Microcomputers 53

U

A

H
U

A

H

U

A

H

Leakage Power

leakVI

Sub-threshold current grows exponentially with
increases in temperature and decreases in Vt

Sub-threshold
current

CPE/EE 421/521 Microcomputers 54

U

A

H
U

A

H

U

A

H

CMOS Power Equations

leakshort
2 VIfAVIfACVP ++= τ

V
)VV(f
2

t
max

−
∝

Reduce the
supply voltage, V

)
kT
qVexp(I t

leak −∝

Reduce
threshold Vt

Alex Milenkovich 28

CPE/EE 421/521 Microcomputers 55

U

A

H
U

A

H

U

A

HHow can we reduce
power consumption?

Dynamic power consumption
charge/discharge of the capacitive load
on each gate’s output
frequency

Control activity
reduce power supply voltage
reduce working frequency
turn off unused parts (module enables)
use low power modes
interrupt driven system

Minimize the number of transitions
instruction formats, coding?

CPE/EE 421/521 Microcomputers 56

U

A

H
U

A

H

U

A

H

Average power consumption

Dynamic power supply current
Set of modules that are periodically active
Typical situation – real time cycle T
Iave = ∫ Icc(t)dt /T
In most cases Iave = Σ Ii*ti/T

Icc (power supply current)

Time

T

Alex Milenkovich 29

CPE/EE 421/521 Microcomputers 57

U

A

H
U

A

H

U

A

HLow-Power Concept: Basic Conditions for Burst Mode

The example of the heat cost allocator shows that the current of the non-activity periode
dominates the current consumption.

Measure Process data Real-Time Clock LCD Display

IAVG = IMeasure + ICalculate + IRTC + IDisplay

= IADC* tMeasure/T + Iactive * tcalc /T + Iactive * tRTC /T + IDisplay

= 3mA *200µs/60s + 0.5mA * 10ms/60s + 0.5mA * 0.5ms/60s + 2.1µA

= 10nA + 83nA + 4nA + 2.1µA

IAVG ≅ 2.1µA

The sleep current dominates the current consumption!The sleep current dominates the current consumption!

The currents are related to the sensor and µC system. Additional current consumption of other
system parts should be added for the total system current

CPE/EE 421/521 Microcomputers 58

U

A

H
U

A

H

U

A

H

Battery Life

Battery Capacity BC – [mAh]

Battery Life
BL = BC / Iave

In the previous example, standard 800 mAh
batteries will allow battery life of:

BL = 750 mAh / 2.1 µA ≈ 44 years !!!

Conclusion:
Power efficient modes
Interrupt driven system with processor in idle mode

Alex Milenkovich 30

CPE/EE 421/521 Microcomputers 59

U

A

H
U

A

H

U

A

H

Low power - features

Peak power
Possible damage

Dynamic power
Non-ideal battery characteristics
Ground bounce, di/dt noise

Energy/operation ratio
MIPS/W
Energy x Delay

CPE/EE 421/521 Microcomputers 60

U

A

H
U

A

H

U

A

H

Reducing power consumption

Logic
Clock tree (up to 30% of power)
Clock gating (turn off branches that are not used)
Half frequency clock (both edges)
Half swing clock (half of Vcc)
Asynchronous logic

• completion signals
• testing

Architecture
Parallelism (increased area and wiring)
Speculation (branch prediction)
Memory systems

• Memory access (dynamic)
• Leakage
• Memory banks (turn off unused)

Buses
• 32-64 address/data, (15-20% of power)
• Gray Code, Code compression

Alex Milenkovich 31

CPE/EE 421/521 Microcomputers 61

U

A

H
U

A

H

U

A

H

Reducing power consumption #2
Operating System

Finish computation “when necessary”
Scale the voltage

• Application driven
• Automatic

System Architecture
Power efficient and specialized processing cores
A “convergent” architecture
Trade-off

• AMD K6 / 400MHz / 64KB cache – 12W
• XScale with the same cache 450 mW @ 600 MHz

(40mW@150MHz)
• 24 processors? Parallelism?

Other issues
Leakage current – Thermal runaway
Voltage clustering (low Vthreshold for high speed paths)

CPE/EE 421/521 Microcomputers 62

U

A

H
U

A

H

U

A

H

Operating Modes-General

The MSP430 family was developed for ultralow-power applications and uses

different levels of operating modes. The MSP430 operating modes, give advanced

support to various requirements for ultralow power and ultralow energy consumption.

This support is combined with an intelligent management of operations during the

different module and CPU states. An interrupt event wakes the system from each of

the various operating modes and the RETI instruction returns operation to the mode

that was selected before the interrupt event.

The ultra-low power system design which uses complementary metal-oxide

semiconductor (CMOS) technology, takes into account three different needs:

The desire for speed and data throughput despite conflicting needs for ultra-low power

Minimization of individual current consumption

Limitation of the activity state to the minimum required by the use of low power modes

Alex Milenkovich 32

CPE/EE 421/521 Microcomputers 63

U

A

H
U

A

H

U

A

H

Low power mode control

There are four bits that control the CPU and the main parts of the operation of the system clock
generator:

CPUOff,
OscOff,
SCG0, and
SCG1.

These four bits support discontinuous active mode (AM) requests, to limit the time period of the full
operating mode, and are located in the status register. The major advantage of including the
operating mode bits in the status register is that the present state of the operating condition is
saved onto the stack during an interrupt service request. As long as the stored status register
information is not altered, the processor continues (after RETI) with the same operating mode as
before the interrupt event.

CPE/EE 421/521 Microcomputers 64

U

A

H
U

A

H

U

A

H

Operating Modes-General
Another program flow may be selected by manipulating the data stored on the stack or the stack

pointer. Being able to access the stack and stack pointer with the instruction set allows the
program structures to be individually optimized, as illustrated in the following program flow:

Enter interrupt routine

The interrupt routine is entered and processed if an enabled interrupt awakens

the MSP430:

The SR and PC are stored on the stack, with the content present at the interrupt event.

Subsequently, the operation mode control bits OscOff, SCG1, and CPUOff are cleared
automatically in the status register.

Return from interrupt

Two different modes are available to return from the interrupt service routine and continue the flow of
operation:

Return with low-power mode bits set. When returning from the interrupt, the program counter
points to the next instruction. The instruction pointed to is not executed, since the restored low
power mode stops CPU activity.

Return with low-power mode bits reset. When returning from the interrupt, the program
continues at the address following the instruction that set the OscOff or CPUOff-bit in the status
register. To use this mode, the interrupt service routine must reset the OscOff, CPUOff, SCGO,
and SCG1 bits on the stack. Then, when the SR contents are popped from the stack upon RETI,
the operating mode will be active mode (AM).

Alex Milenkovich 33

CPE/EE 421/521 Microcomputers 65

U

A

H
U

A

H

U

A

H

Operating Modes - Software configurable

There are six operating modes that the software can configure:

Active mode AM; SCG1=0, SCG0=0, OscOff=0, CPUOff=0: CPU clocks are active

Low power mode 0 (LPM0); SCG1=0, SCG0=0, OscOff=0, CPUOff=1:

CPU is disabled

MCLK is disabled

SMCLK and ACLK remain active

Low power mode 1 (LPM1); SCG1=0, SCG0=1, OscOff=0, CPUOff=1:

CPU is disabled

MCLK is disabled

DCO’s dc generator is disabled if the DCO is not used for MCLK or SMCLK when in active mode.
Otherwise, it remains enabled.

SMCLK and ACLK remain active

Low power mode 2 (LPM2); SCG1=1, SCG0=0, OscOff=0, CPUOff=1:

CPU is disabled

MCLK is disabled

SMCLK is disabled

DCO oscillator automatically disabled because it is not needed for MCLK or SMCLK

DCO’s dc-generator remains enabled

ACLK remains active

CPE/EE 421/521 Microcomputers 66

U

A

H
U

A

H

U

A

H

Operating Modes #2

Low power mode 3 (LPM3); SCG1=1, SCG0=1, OscOff=0, CPUOff=1:

CPU is disabled

MCLK is disabled

SMCLK is disabled

DCO oscillator is disabled

DCO’s dc-generator is disabled

ACLK remains active

Low power mode 4 (LPM4); SCG1=X, SCG0=X, OscOff=1, CPUOff=1:

CPU is disabled

ACLK is disabled

MCLK is disabled

SMCLK is disabled

DCO oscillator is disabled

DCO’s dc-generator is disabled

Crystal oscillator is stopped

Alex Milenkovich 34

CPE/EE 421/521 Microcomputers 67

U

A

H
U

A

H

U

A

H

Operating Modes-Low Power Mode in details

Low-Power Mode 0 and 1 (LPM0 and LPM1)

Low power mode 0 or 1 is selected if bit CPUOff in the status register is set. Immediately
after the bit is set the CPU stops operation, and the normal operation of the system
core stops. The operation of the CPU halts and all internal bus activities stop until an
interrupt request or reset occurs. The system clock generator continues operation,
and the clock signals MCLK, SMCLK, and ACLK stay active depending on the state of
the other three status register bits, SCG0, SCG1, and OscOff.

The peripherals are enabled or disabled with their individual control register settings, and
with the module enable registers in the SFRs. All I/O port pins and RAM/registers are
unchanged. Wake up is possible through all enabled interrupts.

Low-Power Modes 2 and 3 (LPM2 and LPM3)

Low-power mode 2 or 3 is selected if bits CPUOff and SCG1 in the status register are set.
Immediately after the bits are set, CPU, MCLK, and SMCLK operations halt and all
internal bus activities stop until an interrupt request or reset occurs.

Peripherals that operate with the MCLK or SMCLK signal are inactive because the clock
signals are inactive. Peripherals that operate with the ACLK signal are active or
inactive according with the individual control registers and the module enable bits in
the SFRs. All I/O port pins and the RAM/registers are unchanged. Wake up is possible
by enabled interrupts coming from active peripherals or RST/NMI.

CPE/EE 421/521 Microcomputers 68

U

A

H
U

A

H

U

A

H

Operating Modes-Low Power Mode in details

Low-Power Mode 4 (LPM4)

System Resets, Interrupts, and Operating Modes In low power mode 4 all activities
cease; only the RAM contents, I/O ports, and registers are maintained. Wake up is
only possible by enabled external interrupts.

Before activating LPM4, the software should consider the system conditions during the
low power mode period . The two most important conditions are environmental (that
is, temperature effect on the DCO), and the clocked operation conditions.

The environment defines whether the value of the frequency integrator should be held or
corrected. A correction should be made when ambient conditions are anticipated to
change drastically enough to increase or decrease the system frequency while the
device is in LPM4.

Alex Milenkovich 35

CPE/EE 421/521 Microcomputers 69

U

A

H
U

A

H

U

A

H

Operating Modes-Examples
The following example describes entering into low-power mode 0.

;===Main program flow with switch to CPUOff Mode==============

BIS #18h,SR ;Enter LPM0 + enable general interrupt GIE

;(CPUOff=1, GIE=1). The PC is incremented

;during execution of this instruction and

;points to the consecutive program step.

...... ;The program continues here if the CPUOff

;bit is reset during the interrupt service

;routine. Otherwise, the PC retains its

;value and the processor returns to LPM0.

The following example describes clearing low-power mode 0.

;===Interrupt service routine=================================

...... ;CPU is active while handling interrupts

BIC #10h,0(SP) ;Clears the CPUOff bit in the SR contents

;that were stored on the stack.

RETI ;RETI restores the CPU to the active state

;because the SR values that are stored on

;the stack were manipulated. This occurs

;because the SR is pushed onto the stack

;upon an interrupt, then restored from the

;stack after the RETI instruction.

CPE/EE 421/521 Microcomputers 70

U

A

H
U

A

H

U

A

H

Operating Modes C Examples
C – programming msp430x14x.h

/************************

* STATUS REGISTER BITS

************************/

#define C 0x0001

#define Z 0x0002

#define N 0x0004

#define V 0x0100

#define GIE 0x0008

#define CPUOFF 0x0010

#define OSCOFF 0x0020

#define SCG0 0x0040

#define SCG1 0x0080

/* Low Power Modes coded with

Bits 4-7 in SR */

/* Begin #defines for assembler */

#ifndef __IAR_SYSTEMS_ICC

#define LPM0 CPUOFF

#define LPM1 SCG0+CPUOFF

#define LPM2 SCG1+CPUOFF

#define LPM3 SCG1+SCG0+CPUOFF

#define LPM4 SCG1+SCG0+OSCOFF+CPUOFF

/* End #defines for assembler */

#else /* Begin #defines for C */

#define LPM0_bits CPUOFF

#define LPM1_bits SCG0+CPUOFF

#define LPM2_bits SCG1+CPUOFF

#define LPM3_bits SCG1+SCG0+CPUOFF

#define LPM4_bits SCG1+SCG0+OSCOFF+CPUOFF

…

#include "In430.h“

#define LPM0 _BIS_SR(LPM0_bits) /* Enter LP Mode 0 */
#define LPM0_EXIT _BIC_SR(LPM0_bits) /* Exit LP Mode 0 */

#define LPM1 _BIS_SR(LPM1_bits) /* Enter LP Mode 1 */
#define LPM1_EXIT _BIC_SR(LPM1_bits) /* Exit LP Mode 1 */
#define LPM2 _BIS_SR(LPM2_bits) /* Enter LP Mode 2 */

#define LPM2_EXIT _BIC_SR(LPM2_bits) /* Exit LP Mode 2 */
#define LPM3 _BIS_SR(LPM3_bits) /* Enter LP Mode 3 */
#define LPM3_EXIT _BIC_SR(LPM3_bits) /* Exit LP Mode 3 */

#define LPM4 _BIS_SR(LPM4_bits) /* Enter LP Mode 4 */
#define LPM4_EXIT _BIC_SR(LPM4_bits) /* Exit LP Mode 4 */

#endif /* End #defines for C */

/* - in430.h -
Intrinsic functions for the MSP430

*/

unsigned short _BIS_SR(unsigned short);
unsigned short _BIC_SR(unsigned short);

