[image: image1.png]7.5 The first known correct software solution to the critical-section problem
for n processes with a lower bound on waiting of n — 1 turns was presented
by Eisenberg and McGuire. The processes share the following variables:

enum pstate {idle, want_in, in_cs};
pstate flag[nl;
int turn;

All the elements of flag are initially idle; the initial value of turn is
immaterial (between O and n-1). The structure of process P; is shown in Fig-
ure 7.28.

Prove that the algorithm satisfies all three requirements for the critical-
section problem.
Answer: No answer.

[image: image2.png]7.16 Suppose that we replace the wait and signal operations of monitors with a
single construct await(B), where B is a general Boolean expression that causes
the process executing it to wait until B becomes true.

a. Write a monitor using this scheme to implement the readers--writers prob-
lem.

b. Explain why, in general, this construct cannot be implemented efficiently.

c. What restrictions need to be put on the await statement so that it can
be implemented efficiently? (Hint: Restrict the generality of B; see
kessels [1977].)

Answer: No answer.

[image: image3.png]8.12 Consider the following snapshot of a system:

Allocation Max Awailable
ABCD ABCD ABCD
Py 0012 0012 1520
Py 1000 1750
Py 1354 2356
P3 0632 0652
Py 0014 0656

Answer the following questions using the banker’s algorithm:

a. What is the content of the matrix Need?

[image: image4.png]b. Is the system in a safe state?

c. If a request from process P; arrives for (0,4,2,0), can the request be granted immedi-
ately?

Answer: No answer.

[image: image5.png]9.7 Why are page sizes always powers of 2?
Answer: Recall that paging is implemented by breaking up an address into a page and
offset number. It is most efficient to break the address into X page bits and Y offset bits,
rather than perform arithmetic on the address to calculate the page number and offset.
Because each bit position represents a power of 2, splitting an address between bits results
in a page size that is a power of 2.

[image: image6.png]9.8 Consider a logical address space of eight pages of 1024 words each, mapped onto a physi-
cal memory of 32 frames.

a. How many bits are there in the logical address?
b. How many bits are there in the physical address?
Answer:

a. Logical address: 13 bits
b. Physical address: 15 bits

[image: image7.png]10.11 Consider the following page reference string:
1,2,3,4,2,1,56,2,1,2,3,7,6,3,2,1,2,3,6.

How many page faults would occur for the following replacement algorithms, assuming
one, two, three, four, five, six, or seven frames? Remember all frames are initially empty,
so your first unique pages will all cost one fault each.

® LRU replacement
* FIFO replacement
e Optimal replacement

Answer:

Number of frames LRU FIFO Optimal

1 20 20 20
2 18 18 15
3 15 16 11
4 10 14 8
5 8 10 7
6 7 10 7
7 7 7 7

[image: image8.png]10.16 A page-replacement algorithm should minimize the number of page faults. We can do
this minimization by distributing heavily used pages evenly over all of memory, rather
than having them compete for a small number of page frames. We can associate with each
page frame a counter of the number of pages that are associated with that frame. Then,
to replace a page, we search for the page frame with the smallest counter.

a. Define a page-replacement algorithm using this basic idea. Specifically address the
problems of (1) what the initial value of the counters is, (2) when counters are in-
creased, (3) when counters are decreased, and (4) how the page to be replaced is
selected.

b. How many page faults occur for your algorithm for the following reference string,
for four page frames?

1,2,3,4,53,4,1,6,7,87,89,7,8,9,54,5,4,2.

c. What is the minimum number of page faults for an optimal page-replacement strat-
egy for the reference string in part b with four page frames?

Answer:

a. Define a page-replacement algorithm addressing the problems of:

i. Initial value of the counters—0.

ii. Counters are increased—whenever a new page is associated with that frame.

iii. Counters are decreased —whenever one of the pages associated with that frame
is no longer required.
iv. How the page to be replaced is selected —find a frame with the smallest counter.
Use FIFO for breaking ties.
b. 14 page faults

c. 11 page faults

[image: image9.png]11.7 Explain the purpose of the open and close operations.
Answer:

o The open operation informs the system that the named file is about to become active.

o The close operation informs the system that the named file is no longer in active use
by the user who issued the close operation.

[image: image10.png]11.9 Give an example of an application in which data in a file should be accessed in the fol-
lowing order:

a. Sequentially
b. Randomly
Answer:

a. Print the content of the file.

b. Print the content of record i. This record can be found using hashing or index tech-
niques.

[image: image11.png]12.1 Consider a file currently consisting of 100 blocks. Assume that the file control block (and
the index block, in the case of indexed allocation) is already in memory. Calculate how
many disk I/O operations are required for contiguous, linked, and indexed (single-level)
allocation strategies, if, for one block, the following conditions hold. In the contiguous-
allocation case, assume that there is no room to grow in the beginning, but there is room
to grow in the end. Assume that the block information to be added is stored in memory.

a. The block is added at the beginning.

b. The block is added in the middle.

c. The block is added at the end.

d. The block is removed from the beginning.
e. The block is removed from the middle.

f. The block is removed from the end.

Answer:

Contiguous Linked Indexed

a. 201 1 1
b. 101 52 1
c. 1 3 1
d. 198 1 0
e. 98 52 0
f. 0 100 0

