4.2 _
Short-term(CPU scheduler)—selects from jobs in memory those jobs that are ready to

execute and allocates the CPU to them.

_ Medium-term—used especially with time-sharing systems as an intermediate scheduling

level. A swapping scheme is implemented to remove partially run programs from

memory and reinstate them later to continue where they left off.

_ Long-term (job scheduler)—determines which jobs are brought into memory for processing.
4.5

a. Direct: simple & straightforward but modularity is limited.
 Indirect: Modular but need mailbox mechanism

b. Symmetric: no confuse may happen, both sender and receiver need to name the other.

 Asymmetric: sender is not required when receiving message but receiver may get confused among the senders.
c. Automatic: no need to implement the buffer but less flexible

Explicit buffering: need to implement but can be designed according to requirements.

d. Fixed size: easy to implement but no flexibility

 Variable size: memory management is more complicated but flexible.
4.8

[Refer pp.119 Fig.4.10

Replace object jave.util.Date.toString() with a randomly chosen string in FourtuneTeller database.]
5.3

(1) User-level threads are unknown by the kernel, whereas the kernel is aware

of kernel threads. (2) User threads are scheduled by the thread library and the kernel

schedules kernel threads. (3) Kernel threads need not be associatedwith a process whereas

every user thread belongs to a process.
5.6

Because a thread is smaller than a process, thread creation typically uses fewer

resources than process creation. Creating a process requires allocating a process control

block (PCB), a rather large data structure. The PCB includes a memory map, list of open

files, and environment variables. Allocating and managing the memory map is typically

the most time-consuming activity. Creating either a user or kernel thread involves allocating

a small data structure to hold a register set, stack, and priority.

